H 2 optimal actuator and sensor placement in the linearised complex Ginzburg – Landau system

نویسندگان

  • KEVIN K. CHEN
  • CLARENCE W. ROWLEY
چکیده

The linearised complex Ginzburg–Landau equation is a model for the evolution of small fluid perturbations, such as in a bluff body wake. By implementing actuators and sensors and designing an H2 optimal controller, we control a supercritical, infinite-domain formulation of this system. We seek the optimal actuator and sensor placement that minimises the H2 norm of the controlled system, from flow disturbances to a cost on the perturbation and input magnitudes. We formulate the gradient of the H2 squared norm with respect to actuator and sensor placements, and iterate toward the optimal placement. When stochastic flow disturbances are present everywhere in the spatial domain, it is optimal to place the actuator just upstream of the origin and the sensor just downstream. With pairs of actuators and sensors, it is optimal to place each actuator slightly upstream of each corresponding sensor, and scatter the pairs throughout the spatial domain. When disturbances are only introduced upstream, the optimal placement shifts upstream as well. Global mode and Gramian analyses fail to predict the optimal placement; they produce H2 norms about five times higher than at the true optimum. The wavemaker region is a better guess for the optimal placement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

Gradient-based optimization methods for sensor & actuator placement in LTI systems

This paper develops efficient techniques for calculating gradient information which may be used to optimize the placement of sensors & actuators of a given precision for the effective estimation and control of high-dimensional discretizations of infinite-dimensional linear time-invariant (LTI) systems. The necessary gradients are determined in this setting via adjoint analyses which quantify th...

متن کامل

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

Optimal Locations on Timoshenko Beam with PZT S/A for Suppressing 2Dof Vibration Based on LQR-MOPSO

Neutralization of external stimuli in dynamic systems has the major role in health, life, and function of the system. Today, dynamic systems are exposed to unpredicted factors. If the factors are not considered, it will lead to irreparable damages in energy consumption and manufacturing systems. Continuous systems such as beams, plates, shells, and panels that have many applications in differen...

متن کامل

A multi-objective optimization approach to optimal sensor placement of irregular LSF structures

In recent years, lightweight steel framed (LSF) structures are designed to resist fire, earthquakes, and storm events. This system has entered the field of construction due to advantages of light members. Based on these advantages, such a system is also used for buildings with special importance. Structural health monitoring (SHM) implements a damage detection and characterization strategy for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011